

HIGH COUNTRY ENGINEERING

Tyler Derzay
Civil Engineering, EIT

BS Civil Engineering & BA

Modern Languages

Tattwankshi Kanojiya

BS Civil Engineering

Increase of production requires the need for more access to the plant

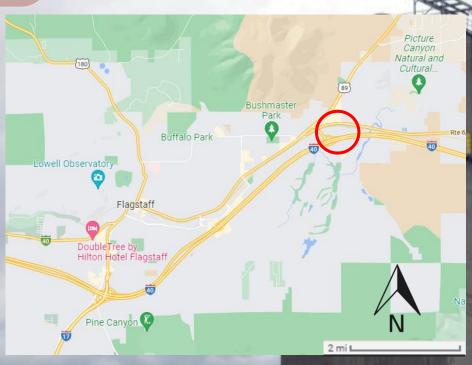


Figure 1: Vicinity Map [3]

Design a Retaining Wall with a 22-foot cut and hydraulic system

Figure 2: Location Map [3]

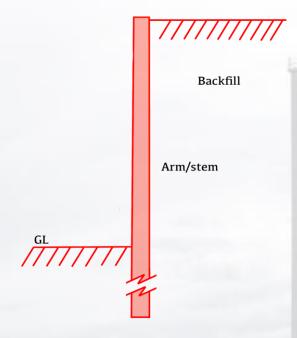
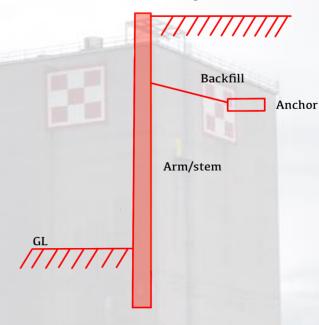

View facing toward the South

Figure 3: Satellite/Terrain View of Site

BASICS OF A RETAINING WALL


Figure 3: Satellite/Terrain View of Site

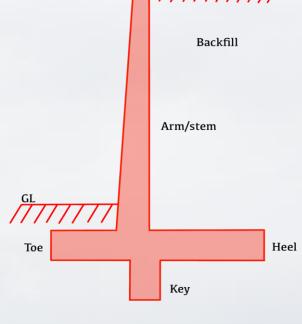
Piling

Pros Very Strong, Minimal Space.


Cons
Requires Extensive
Geotech, Highest Cost

Anchored

Pros Lowest Quantity of Concrete


Cons
Requires Specially
Licensed Contractors

Gravity

Pros Simple Design

Cons
Unstable for heights
greater than 15 ft.

Cantilever

Pros
Conventional Design, meets all
Factors of Safety, can use ADOT
Structural Details

Cons
Requires more
excavation/materials

CODES AND STANDARDS FOR DESIGN

FC

- Arizona Department of Transportation Manual (ADOT)
- International Building Code (IBC)
- City of Flagstaff Building Code
- ADOT Hydrology Manual

Results:

- ADOT Structural Details-7
 - Case I of retaining walls "Level Fill"
- Safety Factors
 - Overturning FS > 2
 - Sliding FS > 1.5
 - Bearing Capacity FS > 3

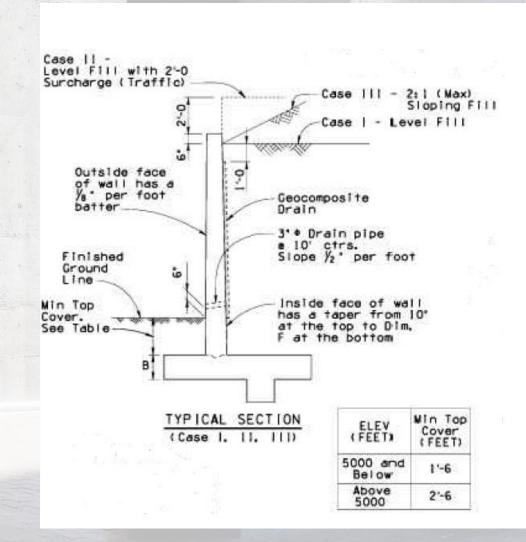


Figure 4: Example of ADOT Retaining Wall

DESIGN AND SELECTION OF PREFERRED ALTERNATIVE

- Retaining Wall Designs
 - Reinforced concrete cantilever continuous foundation
 - Reinforced concrete cantilever stepped foundation

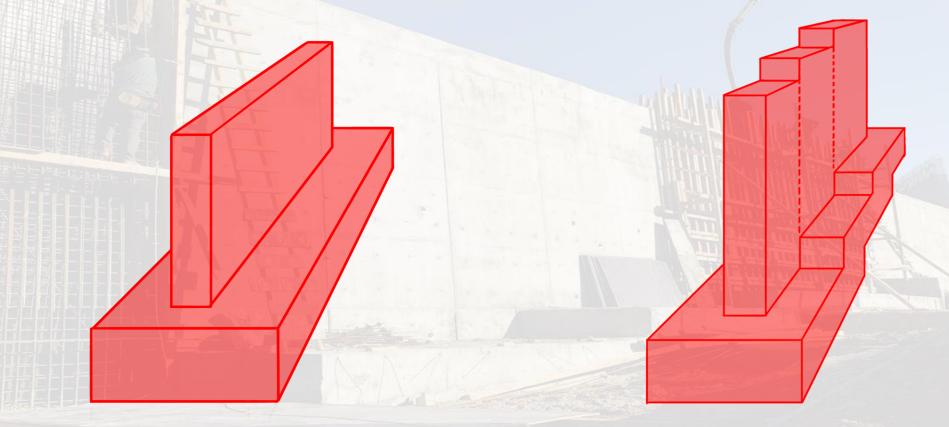
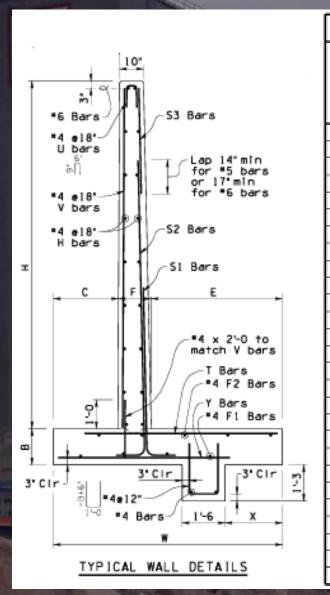


Figure 5: Continuous Foundation Diagram

Figure 6: Stepped Foundation Diagram

RETAINING WALL DECISION MATRIX



Alternative 1: Reinforced Concrete Cantilever:	
Continuous Foundation	

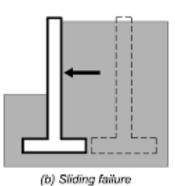
Alternative 2: Reinforced Concrete Cantilever: Stepped Foundation

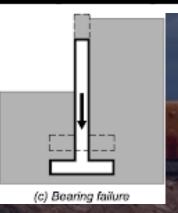
Continuous Po	Dundation	I OUTIGACION		
Criteria	Ranking	Criteria	Ranking	
Strength	2	Strength		
Materials and Cost	0	Materials and Cost	2	
Total	2	Total	3	

RETAINING WALL ANALYSIS

Dimensions						
н	w	В	с	F	E	x
4"	3'-0	140	10"	10"	1'-4	8"
5'	3'-6	150	1'-0	10"	1'-8	9"
6"	4'-0	140	11-2	10"	2'-0	10"
7"	446	150	154	10"	2'-4	11"
8"	5'-0	152	11-6	10"	2'-8	140
9"	5'-6	152	11-9	1'-0	2'-9	152
10'	640	142	11-9	1'-0	343	1'4
11"	6'6	152	2"-0	1'-0	3'-6	146
12"	7'-0	153	21-0	1'-0	4'-0	148
13"	7'-6	143	24-3	1'-0	4'-3	1'-10
14"	8'-0	143	24-3	1'-2	4'-7	240
15"	8'6	1143	2"-6	1'-3	4'-9	2'-2
16"	9'-0	154	21-6	1'-4	5'-2	2'-4
17"	9'-6	154	21-9	1'-5	5'-4	2'-6
18"	10'-0	115	21-9	1'-6	549	248
19"	1046	146	3'-0	1'-7	5'11	2"-10
20'	1150	146	3'-0	1'-8	6'-4	3'-0
21"	1156	157	3'-3	11-9	6'-6	3'-2
22'	12'-0	11-8	3~3	1510	6'-11	3'-4
23'	12'-6	119	3'-6	2'-0	7'-0	3'-6
24"	13'-0	1~10	3'-6	2'-2	7'-4	3'-8
25"	13'-6	2'-0	31-9	2'-4	7'-5	3'-10
26'	14'-0	21-3	31-9	2'-6	71-9	4'-0
27'	14'-6	246	4'-0	2'-8	7510	4'-2
28'	15'-0	219	4'-0	2'-10	8'-2	4'-4
29'	15'-6	3'-0	41-3	3'-0	8'-3	4'-6
30'	16'-0	3-3	4'-3	3'-2	8'-7	4'-8

Figure 7: ADOT Typical Retaining Wall with Varying Dimensions [1]


RETAINING WALL ANALYSIS

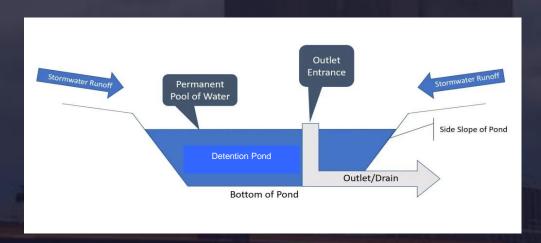

- Safety Factors
 - Overturning FS > 2
 - Sliding FS > 1.5
 - Bearing Capacity FS > 3

$$FS_{overturning} = \frac{\Sigma M_R}{\Sigma M_o}$$

$$FS_{sliding} = \frac{\Sigma F_y + Bc'_s + P_p}{P_a}$$

$$FS_{Bearing \ Capacity} = \frac{q_u}{q_{max}}$$

	10-ft Walls	12-ft Walls	13-ft Walls	14-ft Walls	15-ft Walls	17-ft Walls	21-ft Walls
FS Overturning	3.05	2.85	2.73	2.64	2.56	2.67	2.30
FS Sliding	2.62	2.17	1.99	1.85	1.71	1.65	1.51
FS Bearing Capacity	7.24	6.2	5.87	5.47	5.37	4.72	3.91



HYDROLOGIC/HYDRAULICS

Figure 10: Underground Water Storage

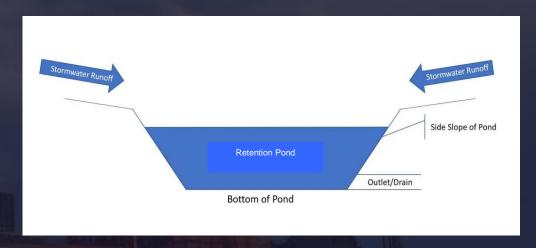


Figure 11: Detention Pond

Figure 12: Retention Pond

HYDROLOGIC/HYDRAULICS DECISION MATRIX

Alternative 1: Dete	ention Pond	Alternative 2: R	etention Pond	Alternative 3: Underground Storage		
Criteria	Ranking	Criteria	Ranking	Criteria	Ranking	
Space Required	1	Space Required	0	Space Required	2	
Materials and		Materials and		Materials and		
Cost	1	Cost	1	Cost	0	
Construction		Construction		Construction		
Timeline	1	Timeline	2	Timeline	0	
Health Concerns	0	Health Concerns	0	Health Concerns	2	
Total	3	Total	3	Total	4	

TOPOGRAPHIC MAP/SITE PLAN

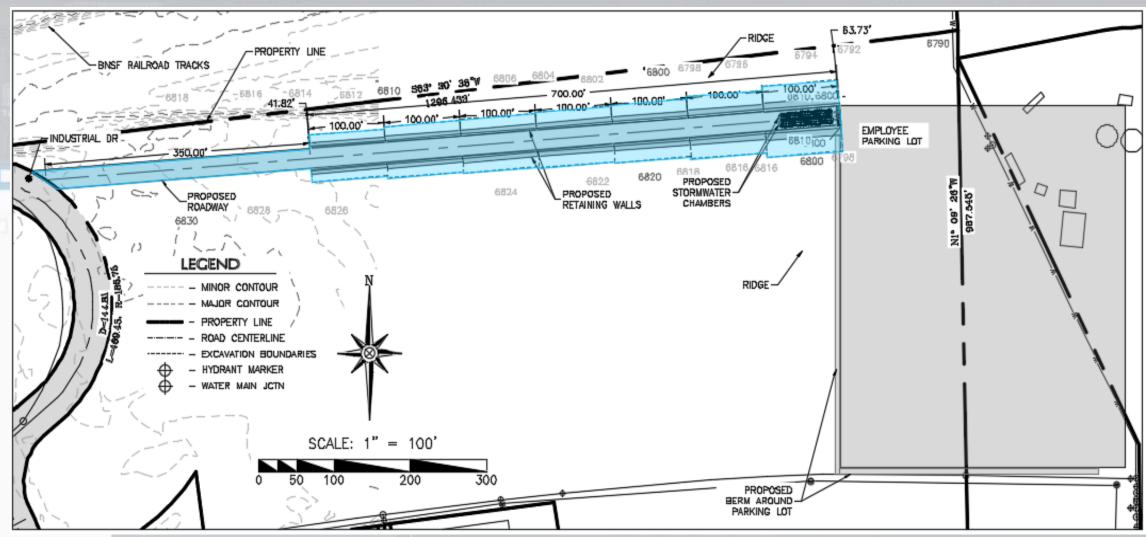


Figure 13: Topographic Map/Site Plan

HYDROLOGIC/HYDRAULIC ANALYSIS

100-YR Storm Rational Method Data

Tc = 10 minutes

	С	i (in/hr)	A (acres)	Q (cfs)
Impervious	0.95	7.09	0.762	5.13
Pervious	0.54	7.09	0.618	2.37

Required Storage = 4500 CF

Recommended Volume (133%) Required Volume = 6000 CF

Component	Volume (CF)
Chamber with 15" Crushed Stone Base	279.3
End Cap with 15" Crushed Stone Base	121.9

Using 20 Stormtech MC-7200 Chambers and 4 End Caps, with 15" crushed stone base Satisfies the Recommended Volume

Figure 14: Hydrologic/Hydraulic Calculations

RETAINING WALL CONSTRUCTION PLAN

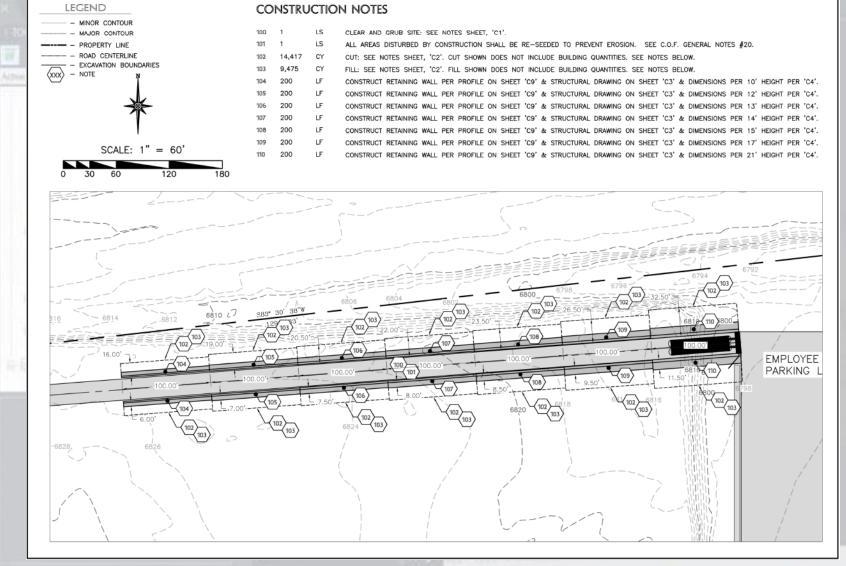


Figure 15: Retaining Wall Construction Plan

HYDRAULIC CONSTRUCTION PLAN

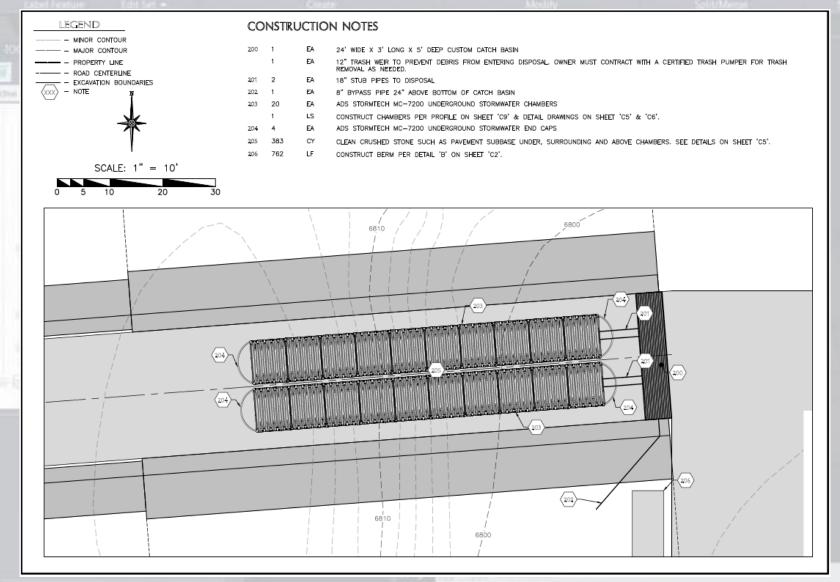


Figure 16: Hydraulic Construction Plan

PROFILE VIEW

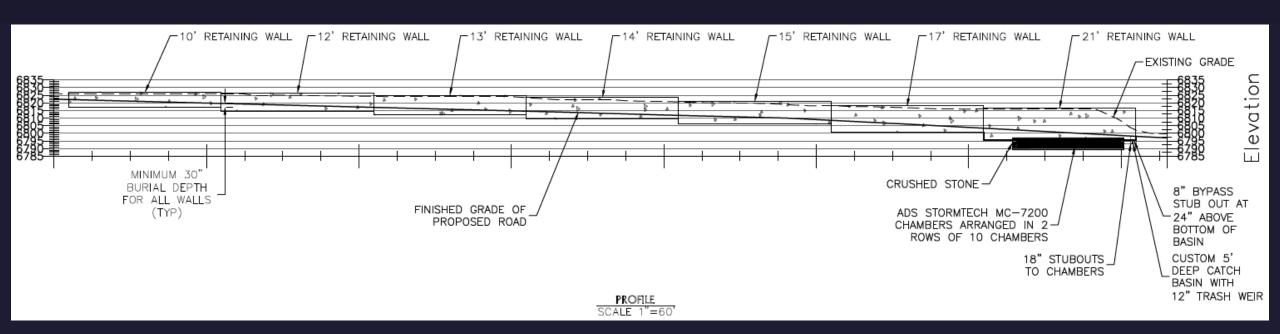


Figure 17: Profile View

COST TO CONSTRUCT

Retaining Wall								
				<u>Unit</u>				
<u>ltem</u>			<u>Estimated</u>	<u>Price</u>				
<u>Number</u>	Item Description	<u>Unit</u>	<u>Quantities</u>	(\$)	<u>Total (</u> \$)			
<u>1</u>	Mobilization & Administration	LS	<u>1</u>	<u>66,410</u>	<u>66,410</u>			
	Remove and Dispose of Tree							
<u>2</u>	<u>> 12" Diameter</u>	Tree	<u>100</u>	<u>500</u>	<u>50,000</u>			
<u>3</u>	<u>Excavation</u>	CY	<u>14,417</u>	<u>165</u>	2,378,805			
<u>4</u>	Subgrade Stabilization	SY	<u>4,900</u>	<u>20</u>	<u>98,000</u>			
<u>5</u>	Curb and Gutter	LF	<u>1,400</u>	<u>20</u>	<u>28,000</u>			
<u>6</u>	Asphalt Pavement	SY	<u>3,600</u>	<u>40</u>	<u>144,000</u>			
<u>7</u>	Retaining Wall	CY	<u>3,450</u>	<u>1000</u>	<u>3,450,000</u>			
<u>8</u>	Catch Basin	LS	<u>1</u>	<u>10,000</u>	<u>10,000</u>			
<u>9</u>	Storm Drainpipe	LF	<u>20</u>	<u>150</u>	<u>3,000</u>			
	StormTech MC-7200							
<u>10</u>	<u>Chambers</u>	EA	<u>20</u>	<u>915</u>	<u> 18,300</u>			
	StormTech MC-7200 End							
<u>11</u>	<u>Caps</u>	EA	<u>4</u>	<u>180</u>	<u>720</u>			
<u>12</u>	Stone Fill around Chambers	CY	<u>383</u>	<u>150</u>	57,450			
<u>13</u>	Retaining Wall Backfill	CY	<u>9,475</u>	<u>165</u>	1,563,375			
<u>Total</u>					<u>7,868,060</u>			

Figure 18: Construction Cost Analysis

IMPACTS

Economic

Positive – increase traffic efficiency
Positive – increase Nestle Purina revenue
Negative – Substantial capital cost with construction
(underground storage)

Environmental

Positive - prevents soil erosion by supporting the surrounding soils

Positive – proper drainage for the deep cut the road requires Positive – prevents contaminated water seepage and pooling water/flash flooding

Negative – large amount of concrete

Negative – disrupting native land

Social

Positive – create more jobs during construction

Positive – employees have easier access to workplace, less time wasted in traffic at plant

Negative – traffic delays during construction

REFERENCES

- Arizona Department of Transportation, "Infrastructure Delivery and Operations Division Bridge Group Standard Drawing "Retaining Wall Reinforced Concrete Cantilever, Drawing No. SD 7.01" Structural Details-7 Retaining Walls, Dec. 2021. [Online] [Accessed: 10-Aug.-2022].
- [2] FLAGSTAFF CITY CODE, TITLE 4, BUILDING REGULATIONS
- [3] Google Maps Nestle Purina Location
- [4] International Building Code (IBC)
- [5] Mesquite Engineering, Final Proposal
- Fbn, "Why employees love working for Nestlé Purina," Flagstaff Business News, 03-Jan-2018. [Online]. Available: https://www.flagstaffbusinessnews.com/employees-love-working-nestle-purina/. [Accessed: 22-Feb-2022]. (Background Title Image)
- [7] Wikipedia Retaining Wall (Typical Retaining Walls Image)
- [8] HMH Group, "Concrete Retaining Wall", 2015, https://hmhgroup.co/portfolio/concrete-retaining-wall/
- [9] Streams and Urbanization Scientific Figure on ResearchGate. Available from:
 https://www.researchgate.net/figure/a-A-detention-pond-designed-to-capture-and-temporarily-store-runoff-

from-the-adjacent_fig7_226149021 [accessed 25 Oct, 2022]

